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State-dependency of process rates: a clear
concept of feedback in ecology

Jon Olav Vik1 and Stig W. Omholt2 .

The complexity of biological systems motivates a search for invariant patterns
(signatures) that indicate which kinds of dynamics a system can exhibit, without
requiring a complete mathematical description and analysis of the system. An
important class of signatures deals with feedback loops, i.e. closed chains of
interaction among state variables in a dynamical system [1-9]. However, while the
concept of feedback has proved useful in regulatory biology [3,10-12], ecological
science usually deals with feedback in a most armwaving manner [13,14].

Four incompatible definitions of feedback currently coexist [1-4]. Opinions
differ on whether the sign of links in a feedback loop is determined by the direction
of processes themselves1, or how process rates respond to changes in system
state. In the latter case, a self-effect (a state variable’s direct effect on itself)
may appear qualitatively different depending on whether one considers the state-
dependency of the relative [2] or the absolute3 rate-of-change of the variable. A
fourth definition uses ”feedback” as a summary measure of all disjunct loops of
action in the system [4].

Without an unambiguous operational definition of positive and negative feed-
back, ecological and biological science is ill-equipped to meet current challenges
in making sense of complex systems. Gene regulatory research produces huge
amounts of data on the complex interplay of positive and negative feedback, call-
ing for algorithms for automated detection of feedback loops. Similar challenges
apply in community ecology [2] and social dynamics.

We evaluate the four candidate feedback definitions for mathematical and con-
ceptual consistency. We favor definition [3] for its proven track record [6,15-18],
its reference-frame independence, and its link to classical stability analysis [19].
Because the state-dependency of process rates is such a fundamental feature of
natural dynamical systems, this feedback concept offers heuristic promise for
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conceptual explanation and hypothesis generation, also beyond the framework of
ordinary differential equations.
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