A mathematical model of blood production involving time-delay

Fabien Crauste ${ }^{1}$ and Mostafa Adimy ${ }^{2}$.

We study a mathematical model of hematopoiesis, the production of blood cells in the bone marrow. The model takes the form of a system of two nonlinear differential equations involving time delay. In this model, the delay corresponds to the time required for a cell to divide.
This model has been introduced by Mackey in 1978 [2] as a delay differential equation. In 1994, Mackey and Rudnicki [3] considered a more general model by taking into account a cell cycle with two phases, a proliferating and a resting phase. The model of Mackey and Rudnicki [3] has been studied by Dyson et al in 1996 [1] and Mackey and Rudnicki in 1999 [4].

We consider a model with two phases, as in [3]. However, we suppose that all cells do not divide, in the proliferating phase, at the same age, but divide according to a density function with a compact support. We study the stability of the system by using Liapunov functionals.

References

[1] J. Dyson, R. Villella-Bressan and G.F. Webb, A singular transport equation modelling a proliferating maturity structured cell population, Can. Appl. Math. Quart. 4, 65-95 (1996).
[2] M.C. Mackey, Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis, Blood 51, 941-956 (1978).

[^0][3] M.C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol. 33, 89-109 (1994).
[4] M.C. Mackey and R. Rudnicki, A new criterion for the global stability of simultaneous cell replication and maturation processes, J. Math. Biol. 38, 195-219 (1999).

[^0]: ${ }^{1}$ Département de Mathématiques Appliquées, Université de Pau, 1 Avenue de l'université, 64000 Pau , France (e-mail: fabien.crauste@univ-pau.fr).
 ${ }^{2}$ Département de Mathématiques Appliquées, Université de Pau, 1 Avenue de l'université, 64000 Pau , France (e-mail: mostafa.adimy@univ-pau.fr).

