Competing Populations in Flows with Chaotic Mixing

György Károlyi ${ }^{1}$, István Scheuring ${ }^{2}$, Tamás Tél ${ }^{3}$ and Zoltán Toroczkai ${ }^{4}$.

Environmental flows lead to imperfect mixing, to a dynamically generated heterogeneity. This is the result of chaotic mixing, which is typical even for simple time-dependent flows. We show that one effect of chaotic advection on the passively advected species (such as phytoplankton [1, 2], or selfreplicating macro-molecules [2]) is the possibility of coexistence of more species than that limited by the number of niches they occupy [1, 2]. We derive a novel set of dynamical equations for competing populations [3]. It turns out that important chaos parameters characterizing the advection modify the traditional population dynamics in a nontrivial way.

References

[1] I. Scheuring, Gy. Károlyi, Á. Péntek, Z. Toroczkai \& T. Tél, 2000, A model for resolving the plankton paradox: coexistence in open flow, Freshwater Biology, 45, 123-133.

[^0][2] Gy. Károlyi, Á. Péntek, I. Scheuring, T. Tél \& Z. Toroczkai, 2000, Open chaotic flow: the physics of species coexistence, Proc. Natl. Acad. Sci. USA, 97, 13661-13665.
[3] I. Scheuring, Gy. Károlyi, Z. Toroczkai, T. Tél, Á. Péntek, 2003, Competing populations in flows with chaotic mixing, Theor. Popul. Biol., 63, 77-90.

[^0]: ${ }^{1}$ Department of Structural Mechanics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1521 Budapest, Hungary (e-mail: karolyi@tas.me.bme.hu).
 ${ }^{2}$ Department of Plant Taxonomy and Ecology, Research Group of Ecology and Theoretical Biology, Eötvös University, Pázmány P. sétány 1/c, H-1117 Budapest, Hungary (e-mail:).
 ${ }^{3}$ Institute for Theoretical Physics, Eötvös University, P. O. Box 32, H-1518 Budapest, Hungary (e-mail:).
 ${ }^{4}$ Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA (e-mail:)

