Basic epidemic model: demographic and disease thresholds

F. Berezovskaya¹, G. Karev², B. Song³ and C. Castillo-Chavez⁴.

A simple epidemic model incorporating both demographic and epidemiological processes and accounting the possibility of mortality/immigration of susceptible individuals is explored. The model has a ratio-dependent form

$$\begin{aligned} \frac{dx}{d\tau} &= \nu R_d \left(x + y \right) \left(1 - \left(x + y \right) \right) - \nu x - R_0 \frac{x y}{x + y} \equiv X(x, y), \\ \frac{dy}{d\tau} &= -y + R_0 \frac{x y}{x + y} \equiv Y(x, y), \end{aligned}$$

where x, y are, correspondingly, normalized numbers of susceptibles and infectives in the population. The following quantities, basic demographic reproductive number (R_d) , basic epidemiological reproductive number (R_0) , and ratio between average life spans of susceptible and infective classes (ν) , are utilized in qualitative analysis.

A global and complete bifurcation analysis is carried out and resulted in the phase-parameter portraits of the model. The non-analytic vector field is handled by a blow-up transformation and a family of homoclinics is found to describe the possible outbreak of disease ignited by a tiny amount of initial infected individuals.

¹Mathematical Department of Howard University, Washington DC 20059 (e-mail: fsberezo@hotmail.com).

²National Center for Biotechnology Information, National Institute of Health, Bethesda MD 20894 (e-mail:).

³Department of Biological Statistics and Computational Biology Cornell University, Ithaca, NY 14853-7801 (e-mail:).

 $^{^4 \}rm Department$ of Biological Statistics and Computational Biology Cornell University, Ithaca, NY 14853-7801 (e-mail:).